
��������	����
�������	����	������������������
�������������
�

LMS-CP-5528
Revision: B

Page 1 of 17

SOFTWARE PLANNING, DEVELOPMENT, ACQUISITION,
MAINTENANCE, and OPERATIONS

Objectives:
-to define the process to develop, acquire, maintain and operate software at LaRC
-to ensure requester requirements are met

Approval Original signed by Delma C. Freeman, Jr.
Deputy Center Director

Table of Contents

Section 1: Software Process Flowchart for all Classes of Software... 2

Section 2: Requirements for Applying Minimal Control to Software... 7

Section 3: Software Project Management Plan (SPMP) Requirements for Low, High and Critical Control....... 7

Section 4: Requirements for Applying Critical Control to Software .. 11

Appendix A: Definitions.. 15

Appendix B: References ... 17

��������	����
�������	����	������������������
�������������
�

LMS-CP-5528
Revision: B

Page 2 of 17

Section 1: Software Process Flowchart for all Classes of Software

START

Requester

Produce/revise
Requester

Requirements for
software products

or services and
determine the
implementing
organization
(see Note 1)

Software Manager

Work with the
requester to

finalize Requester
Requirements
(see Note 3)

Determine
whether the

software will be
created in-house,

developed
externally, or use

'commercial
-off-the-shelf'

(COTS) or
'government-off-

the-shelf' (GOTS)
(see Note 4)

Procure the COTS
software following
LMS-CP-4501 or

obtain GOTS

END

No

Note 3
It is the shared responsibility of the requesting and
implementing organizational units to appoint a Software
Manager.

Advice on preparing Requester Requirements is given in
the Software Engineering Guides [18] see "User
Requirements", and guidance on software requirements
management is given in the Capability Maturity Model
[19], section 7.1.

Note 4
To satisfy NASA requirements [11], the Software
Manager must determine whether a Trade Study will be
performed before software is created or acquired.

COTS or
GOTS to be

used?

Minimal
control?

(see Note 2 &
Table 1)

Follow
Section 2

No

Note 2
Section 2, Requirements for Applying Minimal-Control to
Software, applies to software that:

-Is not a deliverable
-Has negligible risk to LaRC
-Has limited or no maintenance

END

Software Project
Team

 Determine risk to
the software

project
(see Note 5)

Note 5
Initiate an on-line Risk Rating Sheet at URL:
http://sw-eng.larc.nasa.gov/process/sheets.html

Each risk area on the Risk Rating Sheet which has a risk
rating greater than 2 must be considered for risk
management.

Yes

Yes

From next
page

To next page

Note 1
This procedure applies to software developed by or for
LaRC, including new software and modifications to
existing software. Apply this procedure, LMS-CP-5528, if
the software or the data produced by the software are
delivered or published. The Software Manager must
make informed judgments on applying this procedure to
the individual project situation.

All major software activities (see definitions) must provide
quarterly the metrics specified at URL:
http://swmetrics.nasa.gov/

This procedure is for use by all involved in the software
process: requesters, supervisors, software managers,
software critical-control engineers, and other software
project team members. These roles are defined in
Appendix A. A single individual can perform multiple
roles within a project.

If both the yes and no branches of a decision diamond
apply to different parts of a given project, follow both
branches.

Organizational Unit Managers and requesters are
responsible for integrating software engineering
processes with system development and program/project
processes.

http://sw-eng.larc.nasa.gov/process/sheets.html
http://swmetrics.nasa.gov/

��������	����
�������	����	������������������
�������������
�

LMS-CP-5528
Revision: B

Page 3 of 17

Determine the
software class
based on the
information in
Table 1 and
estimate the

resource
requirements

Requester

Permission to
proceed?

Distribute the
software project

plans to all
members of the
software project

team

Keep the SPMP
current and

configuration
manage it

following the
SCMP

Software
developed by
civil service?

To next page

Follow
LMS-CP-5532
(see Note 6)

Develop a
Software Project
Management Plan
(see Notes 6 & 7

and Section 3)

Obtain
authorizations for

the SPMP
(see Note 8)

No

Baseline the
SPMP following

the Software
Configuration

Management Plan
(SCMP)

(see Note 9)

Note 6
Software development, maintenance, and operations may be performed
by civil servants or contractors. If the work is performed by civil servants,
the Software Manager must produce a Software Project Management Plan
(SPMP) as described in Section 3. If the work is performed by a
contractor, the acquiring Software Manager must produce a Software
Acquisition Plan (see LMS-CP-5532), and the contractor must produce an
SPMP. If the work is performed by some combination of the above, the
acquiring Software Manager must produce both an SPMP (for the parts of
the work performed by civil servants) and also a Software Acquisition Plan
(for the parts performed under contract). In addition, the contractor must
produce an SPMP (for the parts of the work performed by the contractor).
For examples of completed plans see [3].

Contracted efforts must be complete and severable tasks.

Note 7
For Critical-Control software projects, also follow the requirements given in
Section 4.

Review and
authorize the

SPMP
(see Note 8)

Note 8
The Supervisor(s) is responsible for authorizing human resources and the
requester is responsible for authorizing the work per the SPMP. A record
of authorization must be retained.

The Requester must ensure that installation, operation, and maintenance
phases of the project are addressed in the SPMP if they are applicable to
the project.

END

Note 9
For High and Critical class software (see Table 1), submit a paper or
electronic copy of the Software Project Management Plan to the Head,
Office of Mission Assurance (OMA). The software project must not
commence until OMA approves High and Critical class SPMPs per
LMS-CP-4754.

To previous
page

From previous
page

Software Manager

No

Yes

Yes

From next
page

Record the
software class on
the Risk Rating

Sheet and submit

��������	����
�������	����	������������������
�������������
�

LMS-CP-5528
Revision: B

Page 4 of 17

From previous
page

Software Manager

Assign detailed
tasks to the

software project
team members

based on their skill
level and ensure
software activities

are performed
according to the
authorized SPMP

Define/refine the
Software

Requirements
and submit to the

requester
(see Note 10)

Software Project
Team

Note 10
Requester Requirements and Software
Requirements may be combined. The software
requirements must be reviewed for testability.
The Software Requirements must be kept current.

Review the
Software

Requirements for
adequacy

(see Note 11)

Acceptable?

Inform the
software manager
that the Software
Requirements are

acceptable

Yes

Baseline the
Software

Requirements
following the

SCMP

Requester

Design required
by SPMP?

Develop Software
Design and

baseline following
the SCMP

Yes

Code and test

No

Develop
Qualification Tests

and baseline
following the

SCMP
(see Note 12)

Note 12
The Qualification Tests must test the software
against each software requirement. The
expected results must be documented.

To next page From next
page

Note 11
If the Software Project Team defining the
requirements is not the requester, a review must
be held with the requester to gain approval of
completed Software Requirements.

No

To previous
page

From next
page

��������	����
�������	����	������������������
�������������
�

LMS-CP-5528
Revision: B

Page 5 of 17

Note 14
Each delivery must be documented with a
Software Version Description which
contains the following information:
-Project title
-Date of delivery
-Point of contact
-Inventory of all baselined CIs to be
 delivered, including unique CI identifier
 and description
-Instructions for reading and installing CIs
-A description of all changes incorporated
 in this delivery

Note 15
When the requirements have been met and the requester
is satisfied that the acceptance criteria recorded in the
SPMP have been achieved, or when appropriate
concessions have been agreed upon, the Software
Manager shall obtain a record (e.g. e-mail or signature) of
requester acceptance and complete the on-line Software
Metrics Collection Sheet at URL:
http://sw-eng.larc.nasa.gov/process/sheets.html

Note 16
Six months following delivery, the Software Manager must
resubmit the Software Metrics Collection Sheet at URL:
http://sw-eng.larc.nasa.gov/process/sheets.html
with the number of Problem Reports approved for
implementation and the hours spent performing
corrections. The Software Engineering Process Group
(SEPG) has overall responsibility for collecting and
analyzing LaRC software engineering process metrics for
action and making them available to the LaRC community
through the SEPG web site [3]. LAPG 1150.2 describes
the SEPG charter.

For long term maintenance efforts, software metrics must
be submitted on an annual basis on the Software Metrics
Collection Sheet.

The procedure for collecting metrics in NPD 2820.1 [11]
has been deferred until specific metrics and roles and
responsibilities for collection are further defined by NASA
HQ.

Note 17
The governing policy for external release of software is
NPD 2210 [10].

Document and
deliver the

software products
(see Note 14)

Release
external to

NASA?

Follow
LMS-CP-1724
 (see Note 17)

Yes

Obtain a
documented
record of the
Requester
Acceptance

(see Note 15)

Complete the
on-line Software

Metrics Collection
Sheet

(see Note 16)

END

Requester

No

Software
accepted?

(see Note 15)
No

From previous
page

Software Project
Team

Execute the
Qualification Tests

Actual equals
expected results?

(see Note 13)

To previous
page

Yes

No

To previous
page

Software Manager

Note 13
Return to the appropriate activity to make
corrections.

Un-resolvable
problem?

Yes

Yes

To next page

Baseline the
Qualification Test
Inputs and Results

following the
SCMP

No

http://sw-eng.larc.nasa.gov/process/sheets.html
http://sw-eng.larc.nasa.gov/process/sheets.html

��������	����
�������	����	������������������
�������������
�

LMS-CP-5528
Revision: B

Page 6 of 17

Table 1: Software Classes for Langley Research Center (LaRC)

Software
Class Risk Level

Use of Software or
Generated Data

Level of Software
Engineering Rigor

Critical
Control

Extreme risk to LaRC’s
reputation, including loss of
life or injury/illness to
personnel; major damage (in
excess of $250K) to
equipment, facilities, or the
environment; or major
collateral damage as a result
of tests.

Software which is safety-critical. The
common characteristics of the
software are that the consequences
of failure are so serious that liabilities
cannot be fully quantified.

• Critical-control planning and analysis required

• Software Project Management Plan (SPMP) and software
standards required

• Defined development procedures with appropriate
analysis of the software before operational use

• Formal problem and change management

• Formally documented reviews, testing, and maintenance

High
Control

Moderate to high degree of risk
to LaRC’s reputation, including
failure of a mission; damage
to the Center’s reputation or
prestige; extended loss of
access to a system; or loss of
data important to the Center.

Software that may support research or
experimentation; may be used in tests;
may be used to monitor/operate
equipment; may be used to collect,
process, model, or simulate
data/information or activities; or may
require maintenance for the evolution
of the software/data.

• SPMP and software standards required

• Judicious problem and change management

• Documented reviews, testing, and maintenance

Low
Control

Small degree of risk to LaRC’s
reputation.

Software and/or resulting data is
delivered to requesters external to the
developing organization. Software has
limited or no maintenance.

• SPMP is required

• Only sufficient rigor to ensure requirements are met and
repeatability of results can be achieved

• Documented testing

Minimal
Control

Has negligible risk to LaRC’s
reputation.

Software is not a deliverable and has
limited or no maintenance.

• Log required

• Only sufficient rigor to ensure requirements are met and
repeatability of results can be achieved

• Documented testing

Either label the
product as

nonconforming or
destroy it

From previous
page

Software Manager

Complete on-line
Software Metrics
Collection Sheet

(see Note 18)

Enter
nonconforming
product trends

from the software
metrics collection
database into CAP

Tracs following
LMS-CP-2303

Software Engineering
Process Group

END

Note 18
URL:
http://sw-eng.larc.nasa.gov/process/sheets.html

http://sw-eng.larc.nasa.gov/process/sheets.html

��������	����
�������	����	������������������
�������������
�

LMS-CP-5528
Revision: B

Page 7 of 17

Section 2: Requirements for Applying Minimal Control to Software

At the point of validation, prior to delivery or publication of the data produced by the software, record
the following information in a Log or Research Plan:

• Project title
• Software class
• Version date
• The requirements: software capabilities, outputs, and any constraints on the software
• The tests performed to validate the product(s) and/or data (such as comparison of actual

software results with expected lab results and/or results from similar algorithms)

Following validation ensure:
• That all software products, results, corresponding Software Test Inputs and Test Outputs have

been given a unique identifier
• That backups of these products have been stored on physically different media
• That the following information has been recorded in the Log:

− The storage location of the products, results, corresponding Software Test Inputs and
Test Outputs

− How access to these products is controlled
− Backup/restoration contact and retention period

If removable media is used, ensure the following information is recorded on media labels:
• Project title
• Content description
• Date electronic files were transferred to the media
• Disk or tape sequence number (e.g. Disk 7 of 9)
• Retention period

For software that is operated routinely, describe or reference the activities or tasks which will be
followed for software operations.

General Notes:

If "Commercial-Off-The-Shelf" (COTS) or "Government-Off-The-Shelf" (GOTS) will be used to fulfill the
requirements, procure COTS products by following LMS-CP-4501.

One Log may be used for multiple projects.

For the user's convenience, the requirements listed above have been posted in Microsoft Word and
text templates at URL: http://sw-eng.larc.nasa.gov/process/

Section 3: Software Project Management Plan (SPMP)
Requirements for Low, High and Critical Control

3.1 Developing a SPMP
3.1.1 The Software Manager must produce an SPMP. For in-house projects, if software quality

assurance support is needed in completing the SPMP, see LMS-CP-4754.

3.1.2 The following software Project Tracking Information from the SPMP and changes to it must be
provided to the supervisor:

• Project title

• Software class

• Start and end dates for the work package, or work breakdown structure (WBS) elements,
or software lifecycle phases

http://sw-eng.larc.nasa.gov/process/

��������	����
�������	����	������������������
�������������
�

LMS-CP-5528
Revision: B

Page 8 of 17

• Assigned employee names and the percentage of their time per work package, or WBS
element, or phase

• Software Manager’s name and percentage of time allocated to this role

• Date of approval of the SPMP

• Organization codes when more than one organization is involved in the project

 (Note: Document 193 [3] may be used to keep a record of this information.)

3.1.3 The Software Manager must review the requester requirements for completeness, clarity,
consistency, and feasibility.

3.1.4 The Software Manager must use the requirements (and changes to the requirements) as the
basis for software plans, schedule, work products, and activities. Guidance on software
requirements management can be found in The Capability Maturity Model: Guidelines for
Improving the Software Process [19, section 7.1].

3.1.5 The SPMP must specify or reference the requester acceptance criteria.

3.1.6 The Software Manager must select and document in the SPMP the software life cycle phases
that will be used on the project.

3.1.7 The life cycle must include a requester requirements phase and/or a software requirements
phase, a code and testing phase, and a qualification-testing phase; in addition, Critical-Control
class software projects must also include a design phase. Guidance on LMS Software
Procedures [1] discusses several life cycle options and contains guidance on choosing one
based on the project specifics.

3.1.8 For High-Control and Critical-Control class software projects, the processes, activities, and
tasks described in IEEE/EIA 12207.0-1996 [8], must be tailored appropriately to the software
project and followed in implementing the software life cycle.

3.1.9 The Software Manager must select and document in the SPMP the software development
approach that will be used on the project. Guidance on LMS Software Procedures [1] provides
recommendations on choosing a development approach based on project size, complexity,
and risk.

3.1.10 For Low-Control software projects, the SPMP may take the form of a Log, and it may be for
either an individual project or a series of related projects. If more than one project is covered
under the plan, the Risk Rating Sheet and the Software Metrics Collection Sheet, must be
completed for each project.

3.1.11 For Low-Control software projects, if risks to the project completion are identified, document
and track the risk and the associated mitigation or avoidance approach.

Subsections 3.1.12 through 3.1.19 of this procedure do not apply to Low-Control class
software.

3.1.12 The SPMP must be developed in accordance with the guidance provided in IEEE/EIA 12207.0
[8], clause 5.2. The SPMP may be a stand-alone plan or included as sections of the project
plan. IEEE 1058.1 [5] or similar standard in use (e.g., IEEE/EIA 12207.1, Section 6.11 [9],
NASA-STD-2100-91 [12]), may be followed in documenting the SPMP. An outline of the IEEE
1058.1 SPMP is provided in the Software Project Management Plan Guidance [2], which also
contains guidance on filling out selected sections of the plan.

3.1.13 The minimum contents of software life cycle data documentation must be as described in
IEEE/EIA 12207.1-1997 [9], or similar standard in use (e.g., NASA-STD-2100-91 [12]), in
conjunction with supplemental documents required for Critical-Control class software.
Depending on how the life cycle is tailored, not all life cycle data and documentation will be
required, and all life cycle data need not be in the form of separate documents (Refer to
IEEE/EIA 12207.1 [9] section 4.3, table 1 for the full listing of life cycle data).

3.1.14 NASA policy [11] requires that — based on the cost, size, life span, and complexity — the plan
address “design tradeoff management, risk management [13, Section 4.2][20], requirements

��������	����
�������	����	������������������
�������������
�

LMS-CP-5528
Revision: B

Page 9 of 17

management [19, Section 7.1], software project planning [19, Section 7.2], project tracking and
oversight [19, Section 7.3], software product engineering [19, Section 8.5], subcontract
management [19, Section 7.4], configuration management [19, Section 7.6], quality assurance
[19, Section 7.5], and peer review [19, Section 8.7]”.

3.1.15 The Software Manager and project personnel must identify, analyze, plan, track, control and
document the risks involved in the software project on a continuous basis. NASA
requirements on risk management are provided in section 1.f of NPD 2820.1, and section 4.2
of NPG 7120.5a [13]. The Continuous Risk Management Guidebook [20] and the NASA
Continuous Risk Management Course [17] both offer additional information and guidance on
risk management. Note: for the reader’s convenience, the 7120.5a requirements on risk
management plan contents have been included in the Software Project Management Plan
Guidance [2] and a risk spreadsheet example is provided at URL: http://sw-
eng.larc.nasa.gov/process/ under the "Examples and References" page.

3.1.16 The Software Manager must define the mechanism that specifies how problems will be
documented, tracked, and resolved.

3.1.17 The SPMP must specify the procedures to be used for performing the following tracking and
oversight activities:

• Authorizing new commitments

• Communicating changes to commitments to software staff

• Tracking and recording actual software size, effort, cost, and schedule of work
products against estimates; recording deviations; and recording the revised schedule.
Note: When it is vital to the success of the project, computer resource utilization must
also be tracked.

• Tracking progress of technical activities and work products, and taking corrective
action

• Conducting periodic reviews to track and record technical progress, plans,
performance, and issues against the SPMP.

3.1.18 The SPMP must specify the software project tracking and oversight records to be retained.

3.1.19 Documented reviews must be performed according to the SPMP schedule and documented
procedure(s).

3.1.20 The results of each review and the names of the reviewers must be documented and retained.

3.1.21 Verification activities must be scheduled. The extent and focus of verification activities will be
influenced by the software class and determined by the Software Manager. (See Guidance on
LMS Software Procedures [1].)

Note: Formal Inspections can be used to satisfy the requirement for software reviews and
verification. The use of Formal Inspections is not limited to “source code” in its applicability.
Formal Inspections can also be used to find defects in documentation, design products, test,
and data. For more information on software Formal Inspections, see the Instructional
Handbook for Formal Inspections [16].

3.1.22 Validation activities must be scheduled (see Guidance on LMS Software Procedures [1]).

Note: Verification, review and validation can be treated as separate activities or integrated and
performed as one activity. It is the responsibility of the Software Manager to select the best
method for performing these activities.

3.1.23 NASA policy [11] requires the developer to document software “as to its form and function and
verify that such software performs the functions claimed on the platform(s) for which it is
designed without harm to the systems or the data contained therein.”

3.1.24 All software related plans and schedules must be documented and updated to ensure they are
current, correct, and feasible. It is recommended that they be reviewed at the end of each
phase.

http://sw-eng.larc.nasa.gov/process/

��������	����
�������	����	������������������
�������������
�

LMS-CP-5528
Revision: B

Page 10 of 17

3.1.25 Additional guidance on software planning is found in the Software Engineering Guides [18]
and the Software Management Guidebook [14]. The LaRC Software Process Improvement
web site contains examples of products and best practices currently in use at LaRC [3].

3.1.26 The Software Configuration Manager must produce a Software Configuration Management
Plan according to the requirements specified in LMS-CP-5529.

3.2 Installation Planning

3.2.1 If installation services are required as part of the software project, the Software Manager must
record in the SPMP the mechanisms that will be used for replication, delivery, installation of
the software, and training the requester to use the products delivered.

3.2.2 In addition, the plan must define the roles and responsibilities of all involved in the transition
process (including the point of contact for requester service).

3.3 Operational Support Planning

3.3.1 If operations support services are required as part of the software project, the Software
Manager must record in the SPMP the activities and tasks for which the operator is
responsible and the point of contact for requester support.

3.3.2 In addition, IEEE/EIA Standard 12207.0 clause 5.4 [8] must be used for defining the operation
process, unless a similar standard is already in use (e.g., NASA-STD-2100-91 [12]).

3.4 Maintenance Planning

3.4.1 If maintenance services are required as part of the software project, the Software Manager
must record the following in the SPMP: the level of maintenance to be performed (e.g., modify
only to fix problems, or modify to include fixes and enhancements); how problems and/or
modifications are identified, classified, prioritized, tracked, and analyzed; and the approval,
implementation, and test process to be used.

3.4.2 IEEE/EIA Standard 12207.0, clause 5.5 [8] must be used for defining the maintenance
process unless a similar standard is already in use (e.g. NASA-STD-2100-91 [12]). It is
recommended that the IEEE Standard 1219-1998 [7] be used for developing the plan.

3.4.3 If the project only involves maintenance, the Maintenance Plan satisfies the requirements for
an SPMP.

3.4.4 Where an external contractor performs maintenance, the plan must form the basis for defining
the work requirements of the contractual agreement.

3.5 Other Plans

3.5.1 If applicable to the software project, the Software Manager must include a plan to address
requirements for health, safety, systems administration, and security (e.g., proprietary,
classified, financial, etc.) in the SPMP.

��������	����
�������	����	������������������
�������������
�

LMS-CP-5528
Revision: B

Page 11 of 17

Section 4: Requirements for Applying Critical Control to Software

4.1 Additional Responsibilities

4.1.1 The Software Manager must ensure that a Hazard Analysis has been performed by the Head
of the Office of Safety and Facility Assurance.

4.1.2 The Software Critical-Control Engineer must be able to report any critical-control concerns to
the Systems Engineer.

4.1.3 The Software Manager is responsible for naming the Software Critical-Control Engineer, the
leader of the Software Project Team, and the leader of the Verification and Validation (V&V)
Team in the SPMP.

Note: Additional guidance on software safety can be found in [15].

4.2 Software Integrity Levels

4.2.1 The Software Manager must ensure that a Software Integrity Level (SIL) is assigned to each
software component which can cause or contribute to a hazard. A SIL is assigned based on
hazard(s) identified in the Hazard Analysis (See Table 4-1). Use Table 4-2 to determine the
techniques to apply during development.

4.2.2 Software Manager must not lower a SIL below that indicated by the Hazard Analysis.

4.2.3 Within a software component, all software units must have the same SIL.

4.2.4 For SILs S3 and S4, the Verification and Validation (V&V) Team must be comprised of
different personnel than those of the Software Project Team.

Table 4-1: Mapping of Hazards to Software Integrity Levels

Safety-critical Hazards SIL

• Loss of life or significant injury/illness to personnel
• Major damage to equipment, facilities, or the environment
• Major collateral damage as a result of tests S4

• Injury/illness to personnel
• Damage to equipment, facilities, or the environment
• Collateral damage as a result of tests S3

• Moderate endangerment of personnel
• Moderate damage to equipment, facilities, or the environment
• Moderate collateral damage as a result of tests S2

• Minor endangerment of personnel
• Minor damage to equipment, facilities, or the environment
• Minor collateral damage as a result of tests S1

��������	����
�������	����	������������������
�������������
�

LMS-CP-5528
Revision: B

Page 12 of 17

Table 4-2: Application of Techniques to be Used Based on Software Integrity Level

Software Integrity Level (SIL)

Technique S4 S3 S2 S1

Software Specification semi-formal or
formal (if
feasible)

semi-formal
(rigorous)

informal, natural
language

Informal, natural
language

Prototyping yes yes

Defined Design Process yes yes yes yes

Requirements & Design Reviews by whole project
team

by project team by project team by peer review

Configuration Management formal formal informal informal
Review of Hazard Analysis Report by whole project

team
by project team by project team by project team

Coding Languages safe subset of
high-level
language

safe subset of
high-level
language

high-level
language

Defensive Programming yes yes yes

Compiler validated validated

Object Code (vendor-supplied) verified verified

Worst Case Execution Time analyzed analyzed

Static Code Analysis yes yes

Formal Inspection yes yes Yes yes

Testing Coverage:

• High-level requirements yes yes Yes yes

• Low-level requirements yes yes Yes yes

• Data and statements yes yes Yes

• Branches yes yes

V&V different than
developer

different than
developer

by developer by developer

Supporting definitions for Table 4-2:

Configuration Management–formal: Characterized by the use of documented procedures
for controlling and tracking software changes; tools are used to automate version control and
change tracking.

Configuration Management–informal: Characterized by the use of documented procedures
for controlling and tracking software changes; personnel manually perform version control
and change tracking.

Safe subset of high-level language: Vendor-supplied, nonstandard features are not used or
use is minimized and isolated.

Compiler–validated: The full set of language statements to be used are employed to
determine allowable spelling deviations, order dependency, and comment recognition and to
confirm optional syntax, statement termination requirements, maximum length of variable
names, scope of variables, operator precedence, addressing schemes, and other similar
issues. Vendor validation of a compiler covering the above items is acceptable.

��������	����
�������	����	������������������
�������������
�

LMS-CP-5528
Revision: B

Page 13 of 17

Defensive programming: Characterized by coding practices which eliminate or minimize the
probability that an input will cause an application to fail. Considerations include explicitly
declaring and initializing all variables, context-checking all input variables (i.e., matching
actual vs. expected type of input), boundary-checking all variables, providing default branch
conditions, avoiding inheritance features after initialization, and other similar practices.

Object Code (vendor-supplied)–verified: Vendor-supplied library functions to be used are
exercised in a test application to ensure that correct results are obtained. The test application
calls library functions to confirm required and optional calling arguments, the type of required
and optional calling arguments, side effects of invalid or missing arguments, boundary checks
performed on arguments, returned error codes, and other similar issues.

Testing Coverage–data and statements: Data values are examined before and after the
execution of a statement to verify that resultant value(s) are computed correctly and that only
values which are expected to change are affected.

4.3 Software Critical-Control Plan

4.3.1 The Software Critical-Control Plan is a supplement to the SPMP. The plan must be developed
in the initial stages of the project in order to provide visibility of all the activities that will
contribute to the assurance of the critical control of the software. The outline for the Software
Critical-Control Plan shown in Table 4-3 must be followed.

4.3.2 The Software Critical-Control Engineer must write the Software Critical-Control Plan.

4.3.3 The Software Manager must approve the Software Critical-Control Plan.

4.3.4 The Software Project Team must execute the Software Critical-Control Plan.

4.3.5 The Software Critical-Control Plan must be kept current.

Table 4-3: Software Critical-Control Plan

SOFTWARE CRITICAL-CONTROL PLAN

1. Purpose and Scope

State the purpose and scope of the plan, including the critical-control goals that are expected to be
achieved.

2. Definitions and References

3. Management

Specify any additional specialized procedures and practices above those specified in the Software
Project Management Plan. Include information that defines the level of independence of project
activities and addresses staff competence to undertake the software project.

4. Procedures and Practices

Describe arrangements for coordination on critical-control matters between organizations participating
in the development of the total system and define circumstances under which matters relating to
Hazard Analysis are referred to these other parties.

5. Disposition of Hazard Analysis

Identify the software components for which the software critical-control analysis will be performed and
document their respective SILs. If a higher SIL is applied for any software component, it is justified
here.

��������	����
�������	����	������������������
�������������
�

LMS-CP-5528
Revision: B

Page 14 of 17

4.4 Software Critical-Control Analysis

4.4.1 The Software Critical-Control Engineer must perform software critical-control analysis
throughout the project life cycle. The purpose of the software critical-control analysis is to
evaluate potential failures that may cause new hazards or contribute to existing ones and
ensure that critical-control features are correctly implemented.

4.4.2 The Software Critical-Control Engineer must document the software critical-control analysis in
the Software Critical-Control Analysis Report. The outline for a Software Critical-Control
Analysis Report shown in Table 4-4 must be followed.

4.4.3 The Software Critical-Control Analysis Report must be available to the Project Manager for
inclusion in the Hazard Analysis updates.

Table 4-4: Software Critical-Control Analysis Report

SOFTWARE CRITICAL-CONTROL ANALYSIS REPORT

1. Description of the system/subsystem(s)

Provide a high level description of the system and its corresponding subsystems (e.g. facility safety
interlock system, wind tunnel model protection system, etc.).

2. Description of the hardware

Identify the number of processors and type, memory capacity, analog input/output boards, digital
input/output boards, network interfaces, etc. References to drawings are appropriate.

3. Description of the software

Provide a brief operational description of the software for the system.

4. Software Critical-Control Analysis

Describe how and why the following items mitigate the potential hazard(s) for the SIL assigned to each
software component:

a. Software requirements—i.e., analysis, reviews, formal inspection, etc.

b. Software design—i.e., method, tools, analysis, reviews, formal inspection, etc.

c. Software code—i.e., language, tools, coding practices, static code analysis (e.g., flow, functional,
etc.), reviews, formal inspection, etc.

d. Testing—i.e., phases of testing, coverage of testing (e.g., paths, statements, branches, etc.), and
regression testing performed following correction to defects.

If applicable, discuss areas where alternative methods (in lieu of software) mitigate the potential
hazard(s) (e.g., operating procedures, limitations, etc.).

5. Summary

Summarize and make the claim that the software is suitable for use in the system.

4.5 Software Critical-Control Reviews

4.5.1 The following critical-control items must be covered at reviews specified in the SPMP:

• Hazard Analysis

• Software Critical-Control Plan

• Software Critical-Control Analysis Report

4.5.2 Reviews must include the following panel members: Software Critical-Control Engineer,
Leader of the V&V Team, Systems Engineer, Requester Representative, and Office of Safety
and Facility Assurance Representative.

��������	����
�������	����	������������������
�������������
�

LMS-CP-5528
Revision: B

Page 15 of 17

Appendix A: Definitions

Baseline: (1) A specification or product that has been formally reviewed and agreed upon that
thereafter serves as the basis for further development, and that can be changed only through formal
change control procedures. (2) A document or a set of such documents formally designated and fixed
at a specific time during the life cycle of a configuration item [4].

Commercial-Off-The-Shelf (COTS) software: A general-purpose application, utility or system
developed and sold by a company and for which a means of providing through-life support is available.

Computer system: A system containing one or more computers and associated software [4].

Configuration management: A discipline applying technical and administrative direction and
surveillance to identify and document the functional and physical characteristics of a configuration
item, control changes to those characteristics, record and report change processing and
implementation status, and verify compliance with specified requirements [4].

Delivery: Release of a system or component to its requester or intended user.

Government-Off-The-Shelf (GOTS) software: Software developed by the Government.

Hazard Analysis: A component-by-component system evaluation where possible failures are
examined to determine the probability of occurrence and resulting consequences.

Life cycle: See Software life cycle.

Log: A software engineer’s file, with a unique identifier, containing software information and phase
outputs. A Log may be a developer’s notebook or electronic file.

Low-control software: Software that has limited or no maintenance. The software and/or resulting data
may be delivered to requesters external to the developing organization.

Maintenance: The process of modifying a software system or component after delivery to correct
faults, improve performance or other attributes, or adapt to a changed environment [4].

Major software activities: Aerospace programs or projects in which failure of the software could
cause mission failure; projects in which failure of the software could result in harm to humans,
facilities, or equipment; or projects in which failure of the software would cause risk to NASA's public
reputation.

Peer review: A review of a software work product, following defined procedures, by peers of the
producers of the product for the purpose of identifying defects and improvements [19].

Phase: A major segment of work in the software development process, for example: requester
requirements, software requirements, architectural design, detailed design, coding and testing,
qualification-testing, acceptance, operations, and maintenance.

Requester: The person responsible for funding the software project and receiving project deliverables.
The IEEE standards use the term “customer” to refer to requester.

Software: Computer programs, procedures, and possibly associated documentation and data
pertaining to the operation of a computer system [4]. Examples include code, code generated using
CASE tools, databases, graphical user interfaces, object libraries, mathematical or data analysis
packages, and requirements, design, and test documents.

Software Configuration Manager: The individual responsible for development of the Software
Configuration Management Plan and ensuring it is executed.

Software critical-control analysis: An activity in which system or software requirements, software
design, and software code are examined to identify defects that have a potential to cause or contribute
to system hazards.

Software Critical-Control Engineer: A software engineer who applies safety engineering principles
to the formulation, design, development, testing, and documentation of software.

��������	����
�������	����	������������������
�������������
�

LMS-CP-5528
Revision: B

Page 16 of 17

Software Engineer: A member of the software technical staff who applies engineering principles to
the formulation, design, development, testing, operations, and maintenance of software.

Software Engineering Process Group (SEPG): A group of specialists who facilitate the definition,
maintenance, and improvement of the software process used by the organization [19].

Software life cycle: The period of time that begins when a software product is conceived and ends
when the software is no longer available for use. The software life cycle typically includes a concept
phase, requirements phase, design phase, implementation phase, test phase, installation and
checkout phase, operation and maintenance phase, and sometimes, retirement phase. Note: These
phases may overlap or be performed iteratively [4].

Software Manager: The individual with overall responsibility for planning, control, and delivery of a
software project.

Software metric: 1) A quantitative measure of the degree to which a system component or process
possesses a given attribute; or 2) a measurable indication of some quantitative aspect of a software
project; (e.g., size, cost, risk, time).

Software project: A number of specified activities encompassing the acquisition, supply,
development, operations, or maintenance of software. A software project may be 1) a project in its own
right, or 2) a subproject of a parent project.

Software Project Management Plan (SPMP): A document which covers the totality of a software
project from start to finish and describes the objectives and deliverables, the approach to be taken, the
controls employed, the activities and milestones, and the resources to be used.

Software Project Team: The personnel assigned to a project, who design, code, unit test, and
document software.

Supervisor: An individual whom higher management has given responsibility and authority for
assigning workforce, managing facilities, and reviewing work plans for technical accuracy and validity.

Validation: The process of evaluating a system or component during or at the end of the development
process to determine whether it satisfies specified requirements [4].

Verification: 1) The process of evaluating a system or component to determine whether the products
of a given phase satisfy the conditions imposed at the start of that phase. 2) Formal proof of program
correctness [4].

V&V Team: The personnel assigned to a project who review testing of software and prepare and
conduct plans to determine that software operates correctly (i.e., verify) and operates according to
requirements (i.e., validate).

��������	����
�������	����	������������������
�������������
�

LMS-CP-5528
Revision: B

Page 17 of 17

Appendix B: References

1 Guidance on LMS Software Procedures. (URL: http://sw-eng.larc.nasa.gov/process/)

2 Software Project Management Plan Guidance. (URL: http://sw-eng.larc.nasa.gov/process/)

3 LaRC Software Process Improvement Initiative web site. (Contains information on the LaRC software
practices, contacts, discussion groups, etc.) (URL: http://sw-eng.larc.nasa.gov/)

4 IEEE Standard 610.12-1990, IEEE Standard Glossary of Software Engineering Terminology.

5 IEEE Standard 1058.1-1997, IEEE Standard for Software Project Management Plans.

6 IEEE Standard 1062-1993, Recommended Practice for Software Acquisition.

7 IEEE Standard 1219-1998, IEEE Standard for Software Maintenance.

8 IEEE/EIA Standard 12207.0-1996, IEEE/EIA Standard, Industry Implementation of International Standard
ISO/IEC 12207: 1995, Standard for Information Technology—Software Life Cycle Processes.

9 IEEE/EIA Standard 12207.1-1997, IEEE/EIA Standard, Industry Implementation of International Standard
ISO/IEC 12207: 1995, Standard for Information Technology—Software Life Cycle Processes—Life Cycle
Data.

10 NASA Policy Directive 2210, October 1997, External Release of NASA Software. (URL:
http://nodis.hq.nasa.gov/Library/Directives/NASA-WIDE/Policies/Legal_Policies/N_PD_2210_1.html)

11 NASA Policy Directive 2820.1, May 1998, NASA Software Policies. (URL:
http://nodis.hq.nasa.gov/Library/Directives/NASA-WIDE/Policies/Legal_Policies/N_PD_2820_1.html)

12 NASA-STD-2100-91 NASA Software Documentation Standard, 1991. (URL
http://satc.gsfc.nasa.gov/assure/docstd.html)

13 NASA Procedures and Guidelines 7120.5a, NASA Program and Project Management Processes
and Requirements, April 3, 1998. (See URL: http://nodis.hq.nasa.gov/Library/Directives/NASA-
WIDE/Procedures/Program_Formulation/N_PG_7120_5A.html)

14 NASA-GB-001-96, Software Program, Software Management Guidebook. (URL:
http://www.ivv.nasa.gov/SWG/resources/index.html)

15 NASA-GB-1740.13-96, NASA Guidebook for Safety Critical Software — Analysis and Development.
(URL: http://www.ivv.nasa.gov/SWG/resources/SWG_safety.html)

16 Instructional Handbook for Formal Inspections. (URL: http://sw-eng.larc.nasa.gov/process/)

17 NASA Continuous Risk Management Course taught by the Software Assurance Technology Center,
NASA Goddard Space Flight Center, NASA-GSFC-SATC-98-001.

18 Software Engineering Guides, C Mazza et al., Prentice Hall (1996), ISBN 0-13-449281-1.

19 Software Engineering Institute at Carnegie Mellon University, The Capability Maturity Model: Guidelines
for Improving the Software Process, Addison-Wesley (1994), ISBN 0-201-54664-7.

20 Software Engineering Institute at Carnegie Mellon University, Continuous Risk Management Guidebook,
1996, NTIS#: AD-A319533KKG, DTIC#: AD-A319 533\6\XAB.

Note: The IEEE references listed in this appendix can be obtained through URL:
http://sw-eng.larc.nasa.gov/larconly/ieee.html

http://sw-eng.larc.nasa.gov/process/
http://sw-eng.larc.nasa.gov/process/
http://sw-eng.larc.nasa.gov/
http://nodis.hq.nasa.gov/Library/Directives/NASA-WIDE/Policies/Legal_Policies/N_PD_2210_1.html
http://nodis.hq.nasa.gov/Library/Directives/NASA-WIDE/Policies/Legal_Policies/N_PD_2820_1.html
http://satc.gsfc.nasa.gov/assure/docstd.html
http://nodis.hq.nasa.gov/Library/Directives/NASA-WIDE/Procedures/Program_Formulation/N_PG_7120_5A.html
http://www.ivv.nasa.gov/SWG/resources/index.html
http://www.ivv.nasa.gov/SWG/resources/SWG_safety.html
http://sw-eng.larc.nasa.gov/process/
http://sw-eng.larc.nasa.gov/larconly/ieee.html

